
CodeBot Python Code By Mission

Mission 2 – Introducing CodeBot

Import from botcore
only leds functions

Turn on one user LED
– parameters are (LED number 0-7, True=on or False=off)

Line sensor LED

– parameters are (LED number 0-4, True=on or False=off)

Mission 3 – Time and Motion (Objectives 1-6)

CodeSpace Debugger

Import a delay

Use sleep()
– will sleep (amount of time in seconds)

Define a variable
(define variables at the top of the code, just under import statements)

Use a variable with
sleep()

Turn off an LED

Turn on three types of
LEDs

User LEDs (middle of the bot)
Line sensor LEDs (across the front)
Proximity sensor LEDs (one on each side)

Use binary
designation for
turning on LEDs

- 0b for binary, then 0=off, 1=on for each LED

Mission 3 – Time and Motion (Objectives 7-9)

Import entire library

– * is a wildcard, which means everything

Turn on motors

– must be done before motors will turn and wheels move

Power a motor
– will turn left wheel forward at 50% power

– will turn right wheel backward at 50% power



Turn off motors

Mission 3 – Time and Motion (Objectives 10-11)

Returns Boolean value
button was pressed – checks button 0, returns True (pressed) or False (not pressed)

Use button press in
branching

Mission 4 – Animatronics (Objectives 1-5)

Infinite loop

Updating a variable
.

Use debugger to view
variables

Open the
console panel
while debugging

Reset a variable to
stay within a range

Break out of a loop

Increment

Turn on LED using a
variable

Mission 4 – Animatronics (Objectives 6-12)

Play a tone on the
speaker

the (argument) is the pitch frequency

Turn off the speaker

Debounce a button
press



While loop

(will iterate, or repeat, 10 times if count starts at 0)

Import random library

Get a random number
within a range

Define a function

Call a function

Mission 5 - Fence Patrol

Read a line sensor

(returns a value between 0 and 4095)

Display the value of a
variable in the console

Assign a Boolean
result of a comparison
to a variable

Use the Boolean
variable in code

Detection Dark line on light surface – use val > threshold
Light line on dark surface – use val < threshold

Use a comparison
with a while loop and
use the control
variable as an
argument in a
function call

Wait loop
(safe driving)

Return statement



Call to a function that
has a return

Use a variable to turn
on LEDs line_count will be from 0 to 255

Wrap-around the
line_count variable for
binary numbers

Mission 6 - Line Follower

Create a list

Update a specific
value in a list

Use a list with LEDs

Botcore line sensors
function (similar to
check_lines) but faster

ls.check() takes 2 parameters

Using or (logical
operator)

can have two or more conditions;
if any of the conditions are true, the statement will evaluate to true

Comparing with a
tuple

Code needed to
change a global
variable inside a
function

Built-in math
operations

Mission 7 - Hot Pursuit

Read the proximity
sensors returns a tuple (left, right) with values True or False



Index values: 0 = left 1 = right

Proximity LEDs

Use parameters P = prox.detect(power, threshold)
Power is the “‘bot flashlight” with settings from 1 to 8 (high power)
Threshold is the sensitivity level, with settings from 1 to 100 (how much light is needed to detect)

Another built-in
function that finds the
ideal thresh for a
given environment

All parameters are optional

Toggle the motors on
and off – can be used
with a button press to
turn on/off the motors

Mission 8 - Navigation

Read a wheel encoder

Compare a state;
Uses the != (not
equals) comparison
operator

Define a list of
counters, initializing to
0

Increment a list of
counters



Constant for pi from
the math module

Copy a list (not make a
reference)

Make a new variable
that will reference the
same list

Debounce the button
press

Marks the passage of
time in milliseconds;
the counter starts at 0
when the device boots
and keeps count up
while it is running.

Diff gives the
difference between
start and stop

Feedback loop

Slower than desired
gives a positive err,
increase power

Delay in milliseconds

Set a default
parameter



Mission 9 - All Systems Go!

Built-in function that
measures power
supply voltage
(battery or USB)

Returns the float power supply voltage; can come from USB or battery pack, depending on power switch

Returns an integer for
which power source is
being used.

Returns 1 for USB, 0 for battery pack

Turn on power LED

activates the red LED just above the power switch

Add a value to a list

Empty a list

Read the
accelerometer

returns a tuple: 3 integers from -32767 to + 32768

Prints the
accelerometer reading
on the console

Calculate the
difference between
current reading and
previous reading

If the difference
between readings is
more than the
sensitivity, sound
alarm


